Scientific Reports (Nov 2023)
N-acetylcysteine: a novel approach to methaemoglobinaemia in normothermic liver machine perfusion
Abstract
Abstract Extended duration of normothermic machine perfusion (NMP) provides opportunities to resuscitate suboptimal donor livers. This intervention requires adequate oxygen delivery typically provided by a blood-based perfusion solution. Methaemoglobin (MetHb) results from the oxidation of iron within haemoglobin and represents a serious problem in perfusions lasting > 24 h. We explored the effects of anti-oxidant, N-acetylcysteine (NAC) on the accumulation of methaemoglobin. NMP was performed on nine human donor livers declined for transplantation: three were perfused without NAC (no-NAC group), and six organs perfused with an initial NAC bolus, followed by continuous infusion (NAC group), with hourly methaemoglobin perfusate measurements. In-vitro experiments examined the impact of NAC (3 mg) on red cells (30 ml) in the absence of liver tissue. The no-NAC group sustained perfusions for an average of 96 (range 87–102) h, universally developing methaemoglobinaemia (≥ 2%) observed after an average of 45 h, with subsequent steep rise. The NAC group was perfused for an average of 148 (range 90–184) h. Only 2 livers developed methaemoglobinaemia (peak MetHb of 6%), with an average onset of 116.5 h. Addition of NAC efficiently limits formation and accumulation of methaemoglobin during NMP, and allows the significant extension of perfusion duration.