International Journal of Molecular Sciences (Jan 2023)

GxxxG Motif Stabilize Ion-Channel like Pores through C<sub>α</sub>―H···O Interaction in Aβ (1-40)

  • Carola Rando,
  • Giuseppe Grasso,
  • Dibakar Sarkar,
  • Michele Francesco Maria Sciacca,
  • Lorena Maria Cucci,
  • Alessia Cosentino,
  • Giuseppe Forte,
  • Martina Pannuzzo,
  • Cristina Satriano,
  • Anirban Bhunia,
  • Carmelo La Rosa

DOI
https://doi.org/10.3390/ijms24032192
Journal volume & issue
Vol. 24, no. 3
p. 2192

Abstract

Read online

Aβ (1-40) can transfer from the aqueous phase to the bilayer and thus form stable ion-channel-like pores where the protein has alpha-helical conformation. The stability of the pores is due to the presence of the GXXXG motif. It has been reported that these ion-channel-like pores are stabilized by a Cα―H···O hydrogen bond that is established between a glycine of the GXXXG sequence of an alpha-helix and another amino acid of a vicinal alpha-helix. However, conflicting data are reported in the literature. Some authors have suggested that hydrogen bonding does not have a stabilizing function. Here we synthesized pentapeptides having a GXXXG motif to explore its role in pore stability. We used molecular dynamics simulations, quantum mechanics, and experimental biophysical techniques to determine whether hydrogen bonding was formed and had a stabilizing function in ion-channel-like structures. Starting from our previous molecular dynamics data, molecular quantum mechanics simulations, and ATR data showed that a stable ion-channel-like pore formed and a band centered at 2910 cm−1 was attributed to the interaction between Gly 7 of an alpha-helix and Asp 23 of a vicinal alpha-helix.

Keywords