Drones (Jun 2024)
Drone-Based Measurement of the Size Distribution and Concentration of Marine Aerosols above the Great Barrier Reef
Abstract
Marine aerosol particles can act as cloud condensation nuclei and influence the atmospheric boundary layer by scattering solar radiation. The interaction of ocean waves and coral reefs may affect the distribution and size of marine aerosol particles. Measuring this effect has proven challenging. Here, we tested the hypothesis that the distribution and size of marine aerosol particles would vary over three distinct zones (i.e., coral lagoon, surf break, and open water) near One Tree Island in the Great Barrier Reef, which is approximately 85 km off the east coast of Australia. We used a modified DJI Agras T30 drone fitted with a miniaturised scanning electrical mobility sizer and advanced mixing condensation particle counter to collect data on aerosol size distribution between 30 and 300 nm at 20 m above the water surface. We conducted 30 flights over ten days during the Austral summer/autumn of 2023. The fitted bimodal lognormal curves indicate that the number concentrations for aerosols below 85 nm diameter are more than 16% higher over the lagoon than over open water. The average mean mode diameters remained constant across the different zones, indicating no significant influence of breaking waves on the detected aerosol size modes. The most influential explanatory variable for aerosol size distribution was the difference between air temperature and the underlying sea surface, explaining around 40% of the variability. Salinity also exhibited a significant influence, explaining around 12% of the measured variability in the number concentration of aerosols throughout the campaign. A calculated wind stress magnitude did not reveal significant variation in the measured marine aerosol concentrations. Overall, our drone-based aerosol measurements near the water surface effectively characterise the dynamics of background marine aerosols around One Tree Island Reef, illustrating the value of drone-based systems for providing size-dependent aerosol information in difficult-to-access and environmentally sensitive areas.
Keywords