Multiple Sclerosis International (Jan 2011)

Corpus Callosum Microstructural Changes Correlate with Cognitive Dysfunction in Early Stages of Relapsing-Remitting Multiple Sclerosis: Axial and Radial Diffusivities Approach

  • Carolina de Medeiros Rimkus,
  • Thiago de Faria Junqueira,
  • Katarina Paz Lyra,
  • Marcel P. Jackowski,
  • Melissa A. R. Machado,
  • Eliane C. Miotto,
  • Dagoberto Callegaro,
  • Maria Concepción García Otaduy,
  • Claudia da Costa Leite

DOI
https://doi.org/10.1155/2011/304875
Journal volume & issue
Vol. 2011

Abstract

Read online

The corpus callosum is the largest fiber bundle in the central nervous system and it takes part in several cognitive pathways. It can be affected by multiple sclerosis (MS) early in the disease. DTI is capable of infering the microstructural organization of the white matter. The vectorial analysis of the DTI offers the more specific indices of axial diffusivity (AD) and radial diffusivity (RD), which have shown to be useful to discriminate myelin damage from axon loss, respectively. This study presents DTI results (mean diffusivity (MD), fractional anisotropy (FA), RD, and AD) of 23 relapsing-remitting MS patients and its correlation with cognitive performance. There were 47.8% of cognitive impaired patients (MS CI). We found signs of demyelination, reflected by increased RD, and incipient axon loss, reflected by AD increase, which was slightly higher in the MS CI. The cognitive changes correlated with the DTI parameters, suggesting that loss of complexity in CC connections can impair neural conduction. Thus, cognitive impairment can be related to callosal disconnection, and DTI can be a promising tool to evaluate those changes.