Scientific Reports (Feb 2024)

Spatial analysis of 10-year predicted risk and incident atherosclerotic cardiovascular disease: the CoLaus cohort

  • Guillaume Jordan,
  • David Ridder,
  • Stephane Joost,
  • Peter Vollenweider,
  • Martin Preisig,
  • Pedro Marques-Vidal,
  • Idris Guessous,
  • Julien Vaucher

DOI
https://doi.org/10.1038/s41598-024-54900-5
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Whether cardiovascular risk scores geographically aggregate and inform on spatial development of atherosclerotic cardiovascular diseases (ASCVD) remains unknown. Our aim is to determine the spatial distribution of 10-year predicted cardiovascular risk and ASCVD, and to compare the overlap of the resulting spatial distributions. Using prospective data from the CoLaus|PsyCoLaus cohort study (2003–2021) we computed SCORE2 in participants free from ASCVD. Geographical distributions of predicted risk and events were determined using the Gi* Getis-Ord autocorrelation statistic. 6203 individuals (54% women, mean age 52.5 ± SD 10.7, ASCVD incidence rate 5.7%) were included. We identified clusters of high versus low predicted risk (4%, 6%, respectively) and ASCVD (5%, 5% respectively) at baseline. They persisted at follow-up. Overlap of SCORE2 and ASCVD clusters was marginal. Body-mass index and alcohol consumption explained most of the predicted risk distribution. For ASCVD, high clusters persisted or were reinforced after multivariate adjustment, while low incidence clusters were reduced, multifactorial determinants. Incidence rate of ASCVD was 2.5% higher (IC 95%, 1.4–3.7) in clusters of higher incidence of ASCVD. To develop up-to-date, geographically targeted prevention strategies, there is a need to study novel geographically risk factors affecting ASCVD and to update commonly used prediction models for a population approach.