BMC Biology (Jul 2017)
Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species
- S. L. Pearce,
- D. F. Clarke,
- P. D. East,
- S. Elfekih,
- K. H. J. Gordon,
- L. S. Jermiin,
- A. McGaughran,
- J. G. Oakeshott,
- A. Papanikolaou,
- O. P. Perera,
- R. V. Rane,
- S. Richards,
- W. T. Tay,
- T. K. Walsh,
- A. Anderson,
- C. J. Anderson,
- S. Asgari,
- P. G. Board,
- A. Bretschneider,
- P. M. Campbell,
- T. Chertemps,
- J. T. Christeller,
- C. W. Coppin,
- S. J. Downes,
- G. Duan,
- C. A. Farnsworth,
- R. T. Good,
- L. B. Han,
- Y. C. Han,
- K. Hatje,
- I. Horne,
- Y. P Huang,
- D. S. T. Hughes,
- E. Jacquin-Joly,
- W. James,
- S. Jhangiani,
- M. Kollmar,
- S. S. Kuwar,
- S. Li,
- N-Y. Liu,
- M. T. Maibeche,
- J. R. Miller,
- N. Montagne,
- T. Perry,
- J. Qu,
- S. V. Song,
- G. G. Sutton,
- H. Vogel,
- B. P. Walenz,
- W. Xu,
- H-J. Zhang,
- Z. Zou,
- P. Batterham,
- O. R. Edwards,
- R. Feyereisen,
- R. A. Gibbs,
- D. G. Heckel,
- A. McGrath,
- C. Robin,
- S. E. Scherer,
- K. C. Worley,
- Y. D. Wu
Affiliations
- S. L. Pearce
- CSIRO Black Mountain
- D. F. Clarke
- CSIRO Black Mountain
- P. D. East
- CSIRO Black Mountain
- S. Elfekih
- CSIRO Black Mountain
- K. H. J. Gordon
- CSIRO Black Mountain
- L. S. Jermiin
- CSIRO Black Mountain
- A. McGaughran
- CSIRO Black Mountain
- J. G. Oakeshott
- CSIRO Black Mountain
- A. Papanikolaou
- CSIRO Black Mountain
- O. P. Perera
- Southern Insect Management Research Unit, USDA-ARS
- R. V. Rane
- CSIRO Black Mountain
- S. Richards
- Human Genome Sequencing Center, Baylor College of Medicine
- W. T. Tay
- CSIRO Black Mountain
- T. K. Walsh
- CSIRO Black Mountain
- A. Anderson
- CSIRO Black Mountain
- C. J. Anderson
- CSIRO Black Mountain
- S. Asgari
- School of Biological Sciences, University of Queensland
- P. G. Board
- John Curtin School of Medical Research, Australian National University
- A. Bretschneider
- Max Planck Institute of Chemical Ecology
- P. M. Campbell
- CSIRO Black Mountain
- T. Chertemps
- Sorbonnes Universités, UPMC Université Paris 06, Institute of Ecology and Environmental Sciences of Paris
- J. T. Christeller
- Plant and Food Research
- C. W. Coppin
- CSIRO Black Mountain
- S. J. Downes
- CSIRO
- G. Duan
- Research School of Biology, Australian National University
- C. A. Farnsworth
- CSIRO Black Mountain
- R. T. Good
- School of Biological Sciences, University of Melbourne
- L. B. Han
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences
- Y. C. Han
- CSIRO Black Mountain
- K. Hatje
- Max Planck Institute for Biophysical Chemistry
- I. Horne
- CSIRO Black Mountain
- Y. P Huang
- Institute of Plant Physiology and Ecology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences
- D. S. T. Hughes
- Human Genome Sequencing Center, Baylor College of Medicine
- E. Jacquin-Joly
- National Institute for Agricultural Research (INRA), Institute of Ecology and Environmental Sciences of Paris
- W. James
- CSIRO Black Mountain
- S. Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine
- M. Kollmar
- Max Planck Institute for Biophysical Chemistry
- S. S. Kuwar
- Max Planck Institute of Chemical Ecology
- S. Li
- CSIRO Black Mountain
- N-Y. Liu
- CSIRO Black Mountain
- M. T. Maibeche
- Sorbonnes Universités, UPMC Université Paris 06, Institute of Ecology and Environmental Sciences of Paris
- J. R. Miller
- J. Craig Venter Institute
- N. Montagne
- Sorbonnes Universités, UPMC Université Paris 06, Institute of Ecology and Environmental Sciences of Paris
- T. Perry
- School of Biological Sciences, University of Melbourne
- J. Qu
- Human Genome Sequencing Center, Baylor College of Medicine
- S. V. Song
- School of Biological Sciences, University of Melbourne
- G. G. Sutton
- J. Craig Venter Institute
- H. Vogel
- Max Planck Institute of Chemical Ecology
- B. P. Walenz
- J. Craig Venter Institute
- W. Xu
- CSIRO Black Mountain
- H-J. Zhang
- CSIRO Black Mountain
- Z. Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences
- P. Batterham
- School of Biological Sciences, University of Melbourne
- O. R. Edwards
- CSIRO
- R. Feyereisen
- Department of Plant and Environmental Sciences, University of Copenhagen
- R. A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine
- D. G. Heckel
- Max Planck Institute of Chemical Ecology
- A. McGrath
- CSIRO Black Mountain
- C. Robin
- School of Biological Sciences, University of Melbourne
- S. E. Scherer
- Human Genome Sequencing Center, Baylor College of Medicine
- K. C. Worley
- Human Genome Sequencing Center, Baylor College of Medicine
- Y. D. Wu
- College of Plant Protection, Nanjing Agricultural University
- DOI
- https://doi.org/10.1186/s12915-017-0402-6
- Journal volume & issue
-
Vol. 15,
no. 1
pp. 1 – 30
Abstract
Abstract Background Helicoverpa armigera and Helicoverpa zea are major caterpillar pests of Old and New World agriculture, respectively. Both, particularly H. armigera, are extremely polyphagous, and H. armigera has developed resistance to many insecticides. Here we use comparative genomics, transcriptomics and resequencing to elucidate the genetic basis for their properties as pests. Results We find that, prior to their divergence about 1.5 Mya, the H. armigera/H. zea lineage had accumulated up to more than 100 more members of specific detoxification and digestion gene families and more than 100 extra gustatory receptor genes, compared to other lepidopterans with narrower host ranges. The two genomes remain very similar in gene content and order, but H. armigera is more polymorphic overall, and H. zea has lost several detoxification genes, as well as about 50 gustatory receptor genes. It also lacks certain genes and alleles conferring insecticide resistance found in H. armigera. Non-synonymous sites in the expanded gene families above are rapidly diverging, both between paralogues and between orthologues in the two species. Whole genome transcriptomic analyses of H. armigera larvae show widely divergent responses to different host plants, including responses among many of the duplicated detoxification and digestion genes. Conclusions The extreme polyphagy of the two heliothines is associated with extensive amplification and neofunctionalisation of genes involved in host finding and use, coupled with versatile transcriptional responses on different hosts. H. armigera’s invasion of the Americas in recent years means that hybridisation could generate populations that are both locally adapted and insecticide resistant.