Applied Sciences (Oct 2021)

A Semi-Supervised Fault Diagnosis Method Based on Improved Bidirectional Generative Adversarial Network

  • Long Cui,
  • Xincheng Tian,
  • Xiaorui Shi,
  • Xiujing Wang,
  • Yigang Cui

DOI
https://doi.org/10.3390/app11209401
Journal volume & issue
Vol. 11, no. 20
p. 9401

Abstract

Read online

With the assumption of sufficient labeled data, deep learning based machinery fault diagnosis methods show effectiveness. However, in real-industrial scenarios, it is costly to label the data, and unlabeled data is underutilized. Therefore, this paper proposes a semi-supervised fault diagnosis method called Bidirectional Wasserstein Generative Adversarial Network with Gradient Penalty (BiWGAN-GP). First, by unsupervised pre-training, the proposed method takes full advantage of a large amount of unlabeled data and can extract features from vibration signals effectively. Then, using only a few labeled data to conduct supervised fine-tuning, the model can perform an accurate fault diagnosis. Additionally, Wasserstein distance is used to improve the stability of the model’s training procedure. Validation is performed on the bearing and gearbox fault datasets with limited labeled data. The results show that the proposed method can achieve 99.42% and 91.97% of diagnosis accuracy on the bearing and gear dataset, respectively, when the size of the training set is only 10% of the testing set.

Keywords