Parasites & Vectors (Nov 2021)
Aedes albopictus life table: environment, food, and age dependence survivorship and reproduction in a tropical area
Abstract
Abstract Background Environmental conditions affect the biology of mosquito vectors. Aedes albopictus is a major vector of many important diseases including dengue, Zika, and chikungunya in China. Understanding the development, fecundity, and survivorship of Ae. albopictus mosquitoes in different environmental conditions is beneficial for the implementation of effective vector control measures. Methods Aedes albopictus larval and adult life-table experiments were conducted under natural conditions in indoor, half-shaded, and fully shaded settings, simulating the three major habitat types in Hainan Province, a tropical island in the South China Sea. Temperature, humidity, and light intensity were recorded daily. Larval rearing used habitat water and tap water, with and without additional artificial food. Development time, survivorship, pupation rate, and adult emergence rates were monitored. Adult mosquito survivorship and fecundity were monitored daily and reproductive rates were determined, and age-dependent survivorship and reproduction were analyzed. Results The pupation time and male and female emergence times were significantly shorter in indoor conditions than in shaded and half-shaded conditions for both tap water with added food and habitat water with added food groups. For habitat water with added food, the shaded environment had the lowest pupation rate among the settings. For tap water with added food group, the shaded environment had the lowest pupation rate. The mean survival time of females was 27.3 ± 0.8 days in the indoor condition, which was significantly longer than that in the half-shaded (18.4 ± 0.6 days) and shaded (13.8 ± 1.2 days) conditions. Adult mortality was age-dependent, and the rate of change in mortality with age was not significantly different among different environmental conditions. The mean net replacement rate (R 0) of female mosquitoes showed no significant difference among the three conditions, whereas the per capita intrinsic growth rate (r) in the shaded condition was 42.0% and 20.4% higher than that in the indoor and half-shaded conditions, respectively. Female daily egg mass was also age-dependent in all the settings, decaying exponentially with age. Conclusions Our results imply that half-shaded conditions are likely the best natural condition for adult emergence and female reproduction, and food supply is crucial for larval development and pupation. The results provide new avenues for integrated mosquito management in indoor and outdoor areas, especially in half-shaded areas. Graphical Abstract
Keywords