Energies (Jun 2021)
Three-Phase PWM Inverter for Isolated Grid-Connected Renewable Energy Applications
Abstract
This paper proposes a three-phase isolated flyback inverter (IFBI) for single-stage grid-tied solar PV applications, considering a simple sinusoidal pulse-width modulation (SPWM) scheme. The proposed single-stage inverter employs a reduced passive elements count by considering three input-parallel output-differential (IPOD) flyback converter modules. Additionally, a single small size LC-input low-pass filter is utilized at the input paralleling point for ripple-free input current operation, which is essential in grid-connected renewable energy applications. In addition, a mathematical model of the IFBI is presented to confirm the existence of its low-order harmonic components. A simple PI controller-based control scheme, considering only two loops and five sensors, is used to control the proposed grid-tied IFBI. Continuous modulation scheme (CMS) combined with SPWM is used to diminish the low-frequency harmonic components. Moreover, a simple selective harmonic elimination (SHE) loop is used for second-order harmonic components (SOHC) elimination from grid-injected currents. The SHE has decreased the SOHC from 43% to 0.96%, which improves the grid current THD from 39% to 3.65%, to follow the IEEE harmonic standard limits. Additionally, the harmonic elimination technique decreases the circulating power between the inverter paralleled modules, which enhances the grid currents power factor. The proposed inverter is verified through a grid-connected 200 V, 1.6 kW, 60 Hz experimental prototype, and the switching frequency is 50 kHz. TMS-based DSP controller is used to control the grid-injected power to follow the reference power set-point.
Keywords