Remote Sensing (Nov 2022)
An Estimation and Compensation Method for Motion Trajectory Error in Bistatic SAR
Abstract
Bistatic synthetic aperture radar (BiSAR) has drawn increasing attention in recent studies benefiting from its ability for forward-looking imaging, its capability of receiver radio silence and its resistance to jamming. However, the motion trajectory error compensation of BiSAR is a challenging task due to multiple error sources and complex effects. In this paper, an estimation and compensation method for three-dimensional (3D) motion trajectory error of BiSAR is proposed. In this method, the Doppler error of multiple scattering points is estimated firstly by using the time–frequency analysis method. Next, a local autofocus process is introduced to improve the Doppler error estimation accuracy. Then, the 3D trajectory error of BiSAR is estimated by solving a series of linear equations of the trajectory error and the Doppler error with the least squares method, and a well-focused BiSAR image is produced by using the corrected 3D trajectories. Finally, simulation and experiment results are presented to demonstrate the effectiveness of the proposed method.
Keywords