Nonautonomous Dynamical Systems (Dec 2022)
Mathematical modeling of the dynamics of vector-borne diseases transmitted by mosquitoes : taking into account aquatic stages and gonotrophic cycle
Abstract
In this paper, we formulate a mathematical model of vector-borne disease dynamics. The model is constructed by considering two models : a baseline model of vector population dynamics due to Lutambi et al. that takes into account the development of the aquatic stages and the female mosquitoes gonotrophic cycle and an SI-SIR model describing the interaction between mosquitoes and human hosts. We briefly study the baseline model of vectors dynamics and, for the transmission model, we explicitly compute the equilibrium points, and by using the method of Van den Driesshe and J. Watmough, we derive the basic reproduction number ℛ0. Otherwise, thanks to Lyapunov’s principle, Routh-Hurwitz criteria and a favorable result due to Vidyasagar, we establish the local and global stability results of the equilibrium points. Furthermore, we establish an interesting relationship between the mosquito reproduction number ℛv and the basic reproduction number ℛ0. It then follows that aquatic stages and behavior of adult mosquitoes have a significant impact on disease transmission dynamics. Finally, some numerical simulations are carried out to support the theoretical findings of the study.
Keywords