Agronomy (Mar 2023)

Manipulation of <i>CBTS1</i> Expression Alters Tobacco Resistance to <i>Spodoptera frugiperda</i> and <i>Phytophthora nicotianae</i>

  • Jian Guan,
  • Zaifeng Du,
  • Tian Tian,
  • Wenjing Wang,
  • Fuzhu Ju,
  • Xiaoyang Lin,
  • Zhongfeng Zhang,
  • Yi Cao,
  • Hongbo Zhang

DOI
https://doi.org/10.3390/agronomy13030845
Journal volume & issue
Vol. 13, no. 3
p. 845

Abstract

Read online

Cembranoids produced by tobacco glandular trichomes have bioactivities in resistance to insect pests and pathogens. Cembratrien-ol synthase (CBTS) plays a key role in the biosynthesis of cembranoids and directly determines the cembranoid content in tobacco. This study examined the effect of changing CBTS1 expression on tobacco resistance to the insect pest Spodoptera frugiperda and oomycete pathogen Phytophthora nicotianae. The CDS sequence of CBTS1 was cloned into gene overexpression and silencing vectors and introduced into tobacco (Nicotiana tabacum L. cv. TN90) to obtain CBTS1-overexpression plants (CBTS1-OE) and CBTS1-silenced plants (CBTS1-RI). Compared with control plants, the content of cembratrien-ol (CBT-ol) was increased 4.48 times in the CBTS1-OE plants but decreased by 68% in the CBTS1-RI plants, while that of cembratrien-diol (CBT-diol) was increased 3.17 times in the CBTS1-OE plants but decreased by 76% in the CBTS1-RI plants. The S. frugiperda resistance of transgenic tobacco plants was evaluated by in vitro toxicity test, and the results showed that the resistance of CBTS1-OE plants to S. frugiperda was significantly improved but that of CBTS1-RI plants was reduced. The P. nicotianae resistance of transgenic tobacco plants was assessed by the detached leaf assay, and the results showed that the resistance of CBTS1-OE plants to P. nicotianae was enhanced, while that of CBTS1-RI plants was attenuated. Further gene expression analysis showed that overexpression of CBTS1 increased the expression of the pathogen-related gene PR-1a, while silencing of CBTS1 decreased its expression. This study demonstrated that manipulating the expression of CBTS1 could change the cembranoid content in tobacco plants and alter their resistance to both insect pests and oomycete pathogens.

Keywords