PLoS ONE (Jan 2015)

Glucose-coated superparamagnetic iron oxide nanoparticles prepared by metal vapour synthesis are electively internalized in a pancreatic adenocarcinoma cell line expressing GLUT1 transporter.

  • Daniele Barbaro,
  • Lorenzo Di Bari,
  • Valentina Gandin,
  • Claudio Evangelisti,
  • Giovanni Vitulli,
  • Eleonora Schiavi,
  • Cristina Marzano,
  • Anna M Ferretti,
  • Piero Salvadori

DOI
https://doi.org/10.1371/journal.pone.0123159
Journal volume & issue
Vol. 10, no. 4
p. e0123159

Abstract

Read online

Iron oxide nanoparticles (IONP) can have a variety of biomedical applications due to their visualization properties through Magnetic Resonance Imaging (MRI) and heating with radio frequency or alternating magnetic fields. In the oncological field, coating IONP with organic compounds to provide specific features and to achieve the ability of binding specific molecular targets appears to be very promising. To take advantage of the high avidity of tumor cells for glucose, we report the development of very small glucose-coated IONP (glc-IONP) by employing an innovative technique, Metal Vapor Synthesis (MVS). Moreover, we tested the internalization of our gl-IONP on a tumor line, BxPC3, over-expressing GLUT 1 transporter. Both glc-IONP and polyvinylpyrrolidone-IONP (PVP-IONP), as control, were prepared with MVS and were tested on BxPC3 at various concentrations. To evaluate the role of GLUT-1 transporter, we also investigated the effect of adding a polyclonal anti-GLUT1 antibody. After proper treatment, the iron value was assessed by atomic absorption spectrometer, reported in mcg/L and expressed in mg of protein. Our IONP prepared with MVS were very small and homogeneously distributed in a narrow range (1.75-3.75 nm) with an average size of 2.7 nm and were super-paramagnetic. Glc-IONP were internalized by BxPC3 cells in a larger amount than PVP-IONP. After 6h of treatment with 50 mcg/mL of IONPs, the content of Fe was 1.5 times higher in glc-IONP-treated cells compared with PVP-IONP-treated cells. After 1h pre-treatment with anti-GLUT1, a reduction of 41% cellular accumulation of glc-IONP was observed. Conversely, the uptake of PVP-IONPs was reduced only by 14% with antibody pretreatment. In conclusion, MVS allowed us to prepare small, homogeneous, super-paramagnetic glc-IONP, which are electively internalized by a tumor line over-expressing GLUT1. Our glc-IONP appear to have many requisites for in vivo use.