Machines (Jul 2024)
Investigation of Single Grain Grinding of Titanium Alloy Using Diamond Abrasive Grain with Positive Rake Angle
Abstract
Traditional grinding, which is predominantly performed with a negative rake angle (NRA), can be transformed into grinding with a positive rake angle (PRA) by employing femtosecond pulsed laser technology to modify the apex angle of the grains to be less than 90°. This innovative approach aims to reduce grinding forces and grinding temperatures while improving the surface quality of typical hard-to-machine materials. To assess the performance of PRA single grain grinding and to investigate the underlying mechanisms, the finite element simulation software ABAQUS 6.14 was employed to model the grinding of Ti6Al4V titanium alloy with a single diamond abrasive grain. The dependence of grinding force and temperature in single grain grinding with a PRA or an NRA under different grinding parameters was studied and compared. PRA and NRA single diamond grain grinding experiments on Ti6Al4V alloy were carried out, with grinding forces measured using a dynamometer and compared with the simulation results. The grinding surface morphology and surface roughness were observed and measured, and a comparison was made between PRA and NRA grinding. The results indicated that in single diamond grain grinding, transforming to a PRA significantly enhances grinding performance, as evidenced by reduced grinding forces, lower temperatures, improved surface morphology, and decreased surface roughness. These findings suggest that PRA single diamond grain grinding offers substantial benefits for the precision machining of hard-to-machine materials, marking a step forward in optimizing surface finishes.
Keywords