Advances in Materials Science and Engineering (Jan 2021)
Research on the Interaction Mechanism between Landslide and Tunnel Engineering
Abstract
The landslide at the entrance of a railway tunnel is large scale, and serious diseases are prone to appear under natural disasters, which threaten the safety of the tunnel. According to its characteristics, on-site long-term monitoring experiments and numerical analysis were carried out, and the mechanism of interaction between landslide and tunnel engineering was analyzed. The results show that under the impact of rainfall and earthquake, the original internal stress balance in the landslide body is disturbed, leading to the increase in landslide thrust and damage of the tunnel lining. Simultaneously, the excavation of the tunnel can slack the surrounding rock to increase the landslide thrust and make the landslide be finally formed; this landslide conversely acts on the tunnel, resulting in deformation and destruction of the tunnel. During the monitoring, under the influence of rainfall and earthquake, the stress of the secondary lining was continuously increased by 25%. Tunnel construction caused a maximum deformation of 30 mm in the antislide pile at a distance of 2.12 m, and the slope and the tunnel were also affected. Under extreme conditions such as rainfall and earthquake, shear failure occurred at the vault, bottom, and waist of the right-line tunnel located at the junction of soil and rock; at this time, the tensile strength of the tunnel reached 93.8% of the limit value of concrete, which seriously affected the safety of the tunnel. As for the weakened tunnel structure, measures such as dense planting and strengthening of concrete strength should be adopted to enhance the safety of the tunnel structure.