BMC Cancer (Oct 2018)
Enhanced antitumor and anti-angiogenic effects of metronomic Vinorelbine combined with Endostar on Lewis lung carcinoma
Abstract
Abstract Background Conventional chemotherapy is commonly used to treat non-small cell lung cancer (NSCLC) however it increases therapeutic resistance. In contrast, metronomic chemotherapy (MET) is based on frequent drug administration at lower doses, resulting in inhibition of neovascularization and induction of tumor dormancy. This study aims to evaluate the inhibitory effects, adverse events, and potential mechanisms of MET Vinorelbine (NVB) combined with an angiogenesis inhibitor (Endostar). Methods Circulating endothelial progenitor cells (CEPs), apoptosis rate, expression of CD31, vascular endothelial growth factor (VEGF), hypoxia inducible factor-1 (HIF-1α) were determined using flow cytometry, western blot analysis, immunofluorescence staining and Enzyme-linked immunosorbent assay (ELISA) analysis. And some animals were also observed using micro fluorine-18-deoxyglucose PET/computed tomography (18F-FDG PET/CT) to identify changes by comparing SUVmax values. In addition, white blood cell (WBC) counts and H&E-stained sections of liver, lungs, kidney, and heart were performed in order to monitor toxicity assessments. Results We found that treatment with MET NVB + Endo was most effective in inhibiting tumor growth, decreasing expression of CD31, VEGF, HIF-1α, and CEPs, and reducing side effects, inducing apoptosis, such as expression of Bcl-2, Bax and caspase-3. Administration with a maximum tolerated dose of NVB combined with Endostar (MTD NVB + Endo) demonstrated similar anti-tumor effects, including changes in glucose metabolism with micro fluorine-18-deoxyglucose PET/computed tomography (18F-FDG PET/CT) imaging, however angiogenesis was not inhibited. Compared with either agent alone, the combination of drugs resulted in better anti-tumor effects. Conclusion These results indicated that MET NVB combined with Endo significantly enhanced anti-tumor and anti-angiogenic responses without overt toxicity in a xenograft model of human lung cancer.
Keywords