Scientific Reports (Aug 2024)
A novel image semantic communication method via dynamic decision generation network and generative adversarial network
Abstract
Abstract Effectively compressing transmitted images and reducing the distortion of reconstructed images are challenges in image semantic communication. This paper proposes a novel image semantic communication model that integrates a dynamic decision generation network and a generative adversarial network to address these challenges as efficiently as possible. At the transmitter, features are extracted and selected based on the channel’s signal-to-noise ratio (SNR) using semantic encoding and a dynamic decision generation network. This semantic approach can effectively compress transmitted images, thereby reducing communication traffic. At the receiver, the generator/decoder collaborates with the discriminator network, enhancing image reconstruction quality through adversarial and perceptual losses. The experimental results on the CIFAR-10 dataset demonstrate that our scheme achieves a peak SNR of 26 dB, a structural similarity of 0.9, and a compression ratio (CR) of 81.5% in an AWGN channel with an SNR of 3 dB. Similarly, in the Rayleigh fading channel, the peak SNR is 23 dB, structural similarity is 0.8, and the CR is 80.5%. The learned perceptual image patch similarity in both channels is below 0.008. These experiments thoroughly demonstrate that the proposed semantic communication is a superior deep learning-based joint source-channel coding method, offering a high CR and low distortion of reconstructed images.
Keywords