Journal of Electronic Science and Technology (Sep 2022)

Feature layer fusion of linear features and empirical mode decomposition of human EMG signal

  • Jun-Yao Wang,
  • Yue-Hong Dai,
  • Xia-Xi Si

Journal volume & issue
Vol. 20, no. 3
p. 100169

Abstract

Read online

To explore the influence of the fusion of different features on recognition, this paper took the electromyogram (EMG) signals of rectus femoris under different motions (walk, step, ramp, squat, and sitting) as signals, linear features (time-domain features (variance (VAR) and root mean square (RMS)), frequency-domain features (mean frequency (MF) and mean power frequency (MPF)), and nonlinear features (EMD) of the signals were extracted. Two feature fusion algorithms, the series splicing method and complex vector method, were designed, which were verified by a double hidden layer error back propagation (BP) neural network. Results show that with the increase of the types and complexity of feature fusions, the recognition rate of the EMG signal to actions is gradually improved. When the EMG signal is used in the series splicing method, the recognition rate of time-domain ​+ ​frequency-domain ​+ ​empirical mode decomposition (TD ​+ ​FD ​+ ​EMD) splicing is the highest, and the average recognition rate is 92.32%. And this value is raised to 96.1% by using the complex vector method, and the variance of the BP system is also reduced.

Keywords