Brain Research Bulletin (Jan 2025)
Impact of different auditory environments on task performance and EEG activity
Abstract
Mental workload could affect human performance. An inappropriate workload level, whether too high or too low, leads to discomfort and decreased task performance. Auditory stimuli have been shown to act as an emotional medium to influence the workload. For example, the ‘Mozart effect’ has been shown to enhance performance in spatial reasoning tasks. However, the impact of auditory stimuli on task performance and brain activity remains unclear. This study examined the effects of three different environments—quiet, music, and white noise—on task performance and EEG activities. The N-back task was employed to induce mental workload, and the Psychomotor Vigilance Task assessed participants’ alertness. We proposed a novel, statistically-based method to construct the brain functional network, avoiding issues associated with subjective threshold selection. This method systematically analyzed the connectivity patterns under different environments. Our analysis revealed that white noise negatively affected participants, primarily impacting brain activity in high-frequency ranges. This study provided deeper insights into the relationship between auditory stimuli and mental workload, offering a robust framework for future research on mental workload regulation.