Sensors (Jun 2019)

Classification of Human Motions Using Micro-Doppler Radar in the Environments with Micro-Motion Interference

  • Xiaolin Ma,
  • Running Zhao,
  • Xinhua Liu,
  • Hailan Kuang,
  • Mohammed A. A. Al-qaness

DOI
https://doi.org/10.3390/s19112598
Journal volume & issue
Vol. 19, no. 11
p. 2598

Abstract

Read online

Human motion classification based on micro-Doppler effect has been widely used in various fields. However, the motion classification performance would be greatly degraded if the wireless environment has non-target micro-motion interference. In this case, the interference signal aliases with the signal of target human motions and then generates cross-terms, making the signals hard to be used to identify target human motions. Existing methods do not consider this non-target micro-motion interference and have poor resistance to such interference. In this paper, we propose a target human motion classification system that can work in the scenarios with non-target micro-motion interference. Specifically, we build a continuous wave radar transceiver working in a low-frequency radar band using the software defined radio equipment Universal Software Radio Peripheral (USRP) N210 to collect signals. Moreover, we use Empirical Mode Decomposition and S-transform successively to remove non-target micro-motion interference and improve the time-frequency resolution of the raw signal. Then, an Energy Aggregation method based on S-method is proposed, which can suppress cross-terms and background noise. Furthermore, we extract a set of features and classify four human motions by adopting Bagged Trees. Extensive experiments using the test-bed show that under the scenarios with non-target micro-motion interference, 97.3% classification accuracy can be achieved.

Keywords