Data (Nov 2022)

Isochromatic-Art: A Computational Dataset for Digital Photoelasticity Studies

  • Juan-Carlos Briñez-De-Leon,
  • Mateo Rico-Garcia,
  • Alejandro Restrepo-Martínez

DOI
https://doi.org/10.3390/data7110151
Journal volume & issue
Vol. 7, no. 11
p. 151

Abstract

Read online

The importance of evaluating the stress field of loaded structures lies in the need for identifying the forces which make them fail, redesigning their geometry to increase the mechanical resistance, or characterizing unstressed regions to remove material. In such work line, digital photoelasticity highlights with the possibility of revealing the stress information through isochromatic color fringes, and quantifying it through inverse problem strategies. However, the absence of public data with a high variety of spatial fringe distribution has limited developing new proposals which generalize the stress evaluation in a wider variety of industrial applications. This dataset shares a variated collection of stress maps and their respective representation in color fringe patterns. In this case, the data were generated following a computational strategy that emulates the circular polariscope in dark field, but assuming stress surfaces and patches derived from analytical stress models, 3D reconstructions, saliency maps, and superpositions of Gaussian surfaces. In total, two sets of ‘101430’ raw images were separately generated for stress maps and isochromatic color fringes, respectively. This dataset can be valuable for researchers interested in characterizing the mechanical response in loaded models, engineers in computer science interested in modeling inverse problems, and scientists who work in physical phenomena such as 3D reconstruction in visible light, bubble analysis, oil surfaces, and film thickness.

Keywords