Nanomaterials (Aug 2024)

Influence of Heat Treatment on Microstructure, Mechanical Properties, and Damping Behavior of 2024 Aluminum Matrix Composites Reinforced by Carbon Nanoparticles

  • Wilson Rativa-Parada,
  • Sabrina Nilufar

DOI
https://doi.org/10.3390/nano14161342
Journal volume & issue
Vol. 14, no. 16
p. 1342

Abstract

Read online

Nanocarbon 2024 aluminum composites with 0.5 vol. % and 1 vol. % of graphene nanoplatelets and 1 vol. % and 2 vol. % of activated nanocarbon were manufactured through induction casting. The effect of the reinforcements and heat treatment on the performance of the composites was examined. Analysis of the microstructure of the composites before heat treatment suggested the homogeneous dispersion of reinforcements and the absence of secondary carbide or oxide phases. The presence of carbon nanoparticles had a significant impact on the microstructural characteristics of the matrix. This behavior was further enhanced after the heat treatment. The mechanical and damping properties were evaluated with the uniaxial compression test, micro Vickers hardness test, and dynamic mechanical analysis. The yield strength and ultimate strength were improved up to 28% (1 vol. % of graphene nanoplatelets) and 45% (0.5 vol. % of graphene nanoplatelets), respectively, compared to the as-cast 2024 aluminum. Similarly, compared to the heat-treated 2024 aluminum, the composites increased up to 56% (0.5 vol. % of graphene nanoplatelets) and 57% (0.5 vol. % of graphene nanoplatelets) in yield strength and ultimate strength, respectively. Likewise, the hardness of the samples was up to 33% (1 vol. % of graphene nanoplatelets) higher than that of the as-cast 2024 aluminum, and up to 31% (2 vol. % of activated nanocarbon) with respect to the heat-treated 2024 aluminum. The damping properties of the nanocarbon–aluminum composites were determined at variable temperatures and strain amplitudes. The results indicate that damping properties improved for the composites without heat treatment. As a result, it is demonstrated that using small volume fractions of nanocarbon allotropes enhanced the mechanical properties for both with- and without-heat treatment with a limited loss of plastic deformation before failure for the 2024 aluminum matrix.

Keywords