ISPRS International Journal of Geo-Information (Dec 2020)

DEM Void Filling Based on Context Attention Generation Model

  • Chunsen Zhang,
  • Shu Shi,
  • Yingwei Ge,
  • Hengheng Liu,
  • Weihong Cui

DOI
https://doi.org/10.3390/ijgi9120734
Journal volume & issue
Vol. 9, no. 12
p. 734

Abstract

Read online

The digital elevation model (DEM) generates a digital simulation of ground terrain in a certain range with the usage of 3D point cloud data. It is an important source of spatial modeling information. Due to various reasons, however, the generated DEM has data holes. Based on the algorithm of deep learning, this paper aims to train a deep generation model (DGM) to complete the DEM void filling task. A certain amount of DEM data and a randomly generated mask are taken as network inputs, along which the reconstruction loss and generative adversarial network (GAN) loss are used to assist network training, so as to perceive the overall known elevation information, in combination with the contextual attention layer, and generate data with reliability to fill the void areas. The experimental results have managed to show that this method has good feature expression and reconstruction accuracy in DEM void filling, which has been proven to be better than that illustrated by the traditional interpolation method.

Keywords