Energies (Aug 2023)
Analysis on DC Fault Current Limiting Operation of Twice-Quench Trigger Type SFCL Using Transformer Considering Magnetizing Current and Current Limiting Reactor
Abstract
As the penetration of distributed energy resources (DER) has increased, research on direct current (DC) power transmission and distribution has been actively performed. The DC system has the advantage of high-power transmission efficiency. However, it has a very large and rapid increase in fault current in the DC system directly after a fault occurs. As one of the countermeasures, studies on the application of the superconducting fault current limiter (SFCL) into the DC system have been conducted to protect major facilities from DC fault current, which is expected to alleviate the power burden on the DC circuit breaker through its quench operation. Among the studied DC SFCLs, the trigger-type DC SFCL using a transformer, which can achieve the peak DC fault current-limiting operation, has been suggested. However, the DC fault current-limiting operation, in the case of the DC SFCL with a current-limiting reactor (CLR), was analyzed to not be effectively executed in the steady state since the transient state directly follows the fault occurrence. In this paper, the DC fault current-limiting operation of a twice-quench trigger type SFCL using a transformer considering magnetizing current and its CLR was analyzed. Through DC fault current-limiting experiments according to the inductance of its current-limiting reactor (CLR), the effective current-limiting design of twice-quench trigger type SFCL using a transformer was described.
Keywords