Membranes (Apr 2023)

Structure and Performance of All-Green Electrospun PHB-Based Membrane Fibrous Biomaterials Modified with Hemin

  • Polina M. Tyubaeva,
  • Ivetta A. Varyan,
  • Alexey V. Krivandin,
  • Olga V. Shatalova,
  • Anatoly A. Olkhov,
  • Anatoly A. Popov,
  • Huaizhong Xu,
  • Olga V. Arzhakova

DOI
https://doi.org/10.3390/membranes13050478
Journal volume & issue
Vol. 13, no. 5
p. 478

Abstract

Read online

This work addresses the challenges concerning the development of “all-green” high-performance biodegradable membrane materials based on poly-3-hydroxybutyrate (PHB) and a natural biocompatible functional additive, iron-containing porphyrin, Hemin (Hmi) via modification and surface functionalization. A new facile and versatile approach based on electrospinning (ES) is advanced when modification of the PHB membranes is performed by the addition of low concentrations of Hmi (from 1 to 5 wt.%). Structure and performance of the resultant {HB/Hmi membranes were studied by diverse physicochemical methods, including differential scanning calorimetry, X-ray analysis, scanning electron microscopy, etc. Modification of the PHB fibrous membranes with Hmi allows control over their quality, supramolecular structure, morphology, and surface wettability. As a result of this modification, air and liquid permeability of the modified electrospun materials markedly increases. The proposed approach provides preparation of high-performance all-green membranes with tailored structure and performance for diverse practical applications, including wound healing, comfort textiles, facial protective masks, tissue engineering, water and air purification, etc.

Keywords