Sensors (Sep 2021)

SiamMFC: Visual Object Tracking Based on Mainfold Full Convolution Siamese Network

  • Jia Chen,
  • Fan Wang,
  • Yingjie Zhang,
  • Yibo Ai,
  • Weidong Zhang

DOI
https://doi.org/10.3390/s21196388
Journal volume & issue
Vol. 21, no. 19
p. 6388

Abstract

Read online

Visual tracking task is divided into classification and regression tasks, and manifold features are introduced to improve the performance of the tracker. Although the previous anchor-based tracker has achieved superior tracking performance, the anchor-based tracker not only needs to set parameters manually but also ignores the influence of the geometric characteristics of the object on the tracker performance. In this paper, we propose a novel Siamese network framework with ResNet50 as the backbone, which is an anchor-free tracker based on manifold features. The network design is simple and easy to understand, which not only considers the influence of geometric features on the target tracking performance but also reduces the calculation of parameters and improves the target tracking performance. In the experiment, we compared our tracker with the most advanced public benchmarks and obtained a state-of-the-art performance.

Keywords