Remote Sensing (Apr 2020)

An Optimized Object-Based Random Forest Algorithm for Marsh Vegetation Mapping Using High-Spatial-Resolution GF-1 and ZY-3 Data

  • Peiqing Lou,
  • Bolin Fu,
  • Hongchang He,
  • Ying Li,
  • Tingyuan Tang,
  • Xingchen Lin,
  • Donglin Fan,
  • Ertao Gao

DOI
https://doi.org/10.3390/rs12081270
Journal volume & issue
Vol. 12, no. 8
p. 1270

Abstract

Read online

Discriminating marsh vegetation is critical for the rapid assessment and management of wetlands. The study area, Honghe National Nature Reserve (HNNR), a typical freshwater wetland, is located in Northeast China. This study optimized the parameters (mtry and ntrees) of an object-based random forest (RF) algorithm to improve the applicability of marsh vegetation classification. Multidimensional datasets were used as the input variables for model training, then variable selection was performed on the variables to eliminate redundancy, which improved classification efficiency and overall accuracy. Finally, the performance of a new generation of Chinese high-spatial-resolution Gaofen-1 (GF-1) and Ziyuan-3 (ZY-3) satellite images for marsh vegetation classification was evaluated using the improved object-based RF algorithm with accuracy assessment. The specific conclusions of this study are as follows: (1) Optimized object-based RF classifications consistently produced more than 70.26% overall accuracy for all scenarios of GF-1 and ZY-3 at the 95% confidence interval. The performance of ZY-3 imagery applied to marsh vegetation mapping is lower than that of GF-1 imagery due to the coarse spatial resolution. (2) Parameter optimization of the object-based RF algorithm effectively improved the stability and classification accuracy of the algorithm. After parameter adjustment, scenario 3 for GF-1 data had the highest classification accuracy of 84% (ZY-3 is 74.72%) at the 95% confidence interval. (3) The introduction of multidimensional datasets improved the overall accuracy of marsh vegetation mapping, but with many redundant variables. Using three variable selection algorithms to remove redundant variables from the multidimensional datasets effectively improved the classification efficiency and overall accuracy. The recursive feature elimination (RFE)-based variable selection algorithm had the best performance. (4) Optical spectral bands, spectral indices, mean value of green and NIR bands in textural information, DEM, TWI, compactness, max difference, and shape index are valuable variables for marsh vegetation mapping. (5) GF-1 and ZY-3 images had higher classification accuracy for forest, cropland, shrubs, and open water.

Keywords