Physics and Imaging in Radiation Oncology (Oct 2023)

Split-filter dual energy computed tomography radiotherapy: From calibration to image guidance

  • Jens Edmund,
  • Marianne Feen Rønjom,
  • Mette van Overeem Felter,
  • Christian Maare,
  • Annica Margrete Juul Dam,
  • Eirini Tsaggari,
  • Patrick Wohlfahrt

Journal volume & issue
Vol. 28
p. 100495

Abstract

Read online

Background and purpose: Dual-energy computed tomography (DECT) is an emerging technology in radiotherapy (RT). Here, we investigate split-filter DECT throughout the RT treatment chain as compared to single-energy CT (SECT). Materials and methods: DECT scans were acquired with a tin-gold split-filter at 140 kV resulting in a low- and high-energy CT reconstruction (recon). Ten cancer patients (four head-and-neck (HN)​, three rectum​, two anal/pelvis and one abdomen) were DECT scanned without and with iodine administered. A cylindrical and an anthropomorphic HN phantom were scanned with DECT and 120 kV SECT. The DECT images generated were: 120 kV SECT-equivalent (CTmix), virtual monoenergetic images (VMIs), iodine map, virtual non-contrast (VNC), effective atomic number (Zeff), and relative electron density (ρe,w). The clinical utility of these recons was investigated for calibration, delineation, dose calculation and image-guided RT (IGRT). Results: A calibration curve for 75 keV VMI had a root-mean-square-error (RMSE) of 34 HU in closest agreement with the RSME of SECT calibration. This correlated with a phantom-based dosimetric agreement to SECT of γ1%1mm > 98%. A 40 keV VMI recon was most promising to improve tumor delineation accuracy with an average evaluation score of 1.6 corresponding to “partial improvement”. The dosimetric impact of iodine was in general < 2%. For this setup, VNC vs. non-contrast CTmix based dose calculations are considered equivalent. SECT- and DECT-based IGRT was in agreement within the setup uncertainty. Conclusions: DECT-based RT could be a feasible alternative to SECT providing additional recons to support the different steps of the RT workflow.

Keywords