Foods (Jun 2023)

Functional Quality Characteristics of the Meat from a Dual-Purpose Poultry Crossbreed Suitable for Backyard Rearing in Comparison to Commercial Broilers

  • Rekha Sharma,
  • Renuka Sehrawat,
  • Sonika Ahlawat,
  • Vivek Sharma,
  • Mohan Singh Thakur,
  • A. K. Mishra,
  • Reena Arora,
  • M. S. Tantia

DOI
https://doi.org/10.3390/foods12132434
Journal volume & issue
Vol. 12, no. 13
p. 2434

Abstract

Read online

Backyard poultry farming contributes to food security, nutrition, and the regular income of rural farmers in India. Their products have a niche market here and fetch higher prices than those of commercial poultry. Improved varieties are being developed to overcome the slow growth, late sexual maturity, and low production of indigenous breeds, while retaining their positive attributes. A comprehensive study was conducted to analyze the functional attributes of meat from the Jabalpur color (JBC), a colored, improved dual-purpose synthetic line, developed by Nanaji Deshmukh Veterinary Science University, Jabalpur, India. The birds were managed in a deep litter system under a backyard type of housing (night shelter and free range). Primal meat cuts (breast and thigh) of the male birds (n = 20/group) were evaluated at the age of marketing. The corresponding attributes were compared with the results obtained for commercial Cobb (400) broilers. The protein concentration of JBC breast (25.65 ± 0.39 g/100 g of tissue) and thigh (19.04 ± 0.23 g/100 g of tissue) meat was superior (p ≤ 0.05) to that of Cobb broilers. Established assays (in vitro) identified a better (p ≤ 0.05) antioxidation capacity in the JBC meat. High-performance liquid chromatography confirmed a considerable quantity of functional biomolecules (carnosine, anserine, and creatine) in the JBC breast and thigh meat extracts. The average carnosine concentration (mg/g of tissue) was 2.66 ± 0.09 and 1.11 ± 0.04 in the JBC breast and thigh meat, respectively. The mRNA expression was quantified by qRT-PCR for the carnosine-related genes: β-alanine transporter (SLC36A1), carnosine-synthesizing enzyme (CARNS1), and carnosine-degrading enzyme (CNDP2); this explained the comparable carnosine in the JBC and Cobb meat. Meat extracts from both genetic groups (JBC and Cobb) had high anti-glycation potential. Higher protein content and antioxidant capacity, along with the bioactive dipeptides in the JBC meat, herald exciting research opportunities for its use in improving the traditional backyard poultry farming system.

Keywords