Journal of Dairy Science (Jul 2023)
Invited review: From heat stress to disease—Immune response and candidate genes involved in cattle thermotolerance
Abstract
ABSTRACT: Heat stress implies unfavorable effects on primary and functional traits in dairy cattle and, in consequence, on the profitability of the whole production system. The increasing number of days with extreme hot temperatures suggests that it is imperative to detect the heat stress status of animals based on adequate measures. However, confirming the heat stress status of an individual is still challenging, and, in consequence, the identification of novel heat stress biomarkers, including molecular biomarkers, remains a very relevant issue. Currently, it is known that heat stress seems to have unfavorable effects on immune system mechanisms, but this information is of limited use in the context of heat stress phenotyping. In addition, there is a lack of knowledge addressing the molecular mechanisms linking the relevant genes to the observed phenotype. In this review, we explored the potential molecular mechanisms explaining how heat stress affects the immune system and, therefore, increases the occurrence of immune-related diseases in cattle. In this regard, 2 relatively opposite hypotheses are under focus: the immunosuppressive action of cortisol, and the proinflammatory effect of heat stress. In both hypotheses, the modulation of the immune response during heat stress is highlighted. Moreover, it is possible to link candidate genes to these potential mechanisms. In this context, immune markers are very valuable indicators for the detection of heat stress in dairy cattle, broadening the portfolio of potential biomarkers for heat stress.