Frontiers in Genetics (Jun 2024)

ScnML models single-cell transcriptome to predict spinal cord neuronal cell status

  • Lijia Liu,
  • Yuxuan Huang,
  • Yuan Zheng,
  • Yihan Liao,
  • Siyuan Ma,
  • Qian Wang

DOI
https://doi.org/10.3389/fgene.2024.1413484
Journal volume & issue
Vol. 15

Abstract

Read online

Injuries to the spinal cord nervous system often result in permanent loss of sensory, motor, and autonomic functions. Accurately identifying the cellular state of spinal cord nerves is extremely important and could facilitate the development of new therapeutic and rehabilitative strategies. Existing experimental techniques for identifying the development of spinal cord nerves are both labor-intensive and costly. In this study, we developed a machine learning predictor, ScnML, for predicting subpopulations of spinal cord nerve cells as well as identifying marker genes. The prediction performance of ScnML was evaluated on the training dataset with an accuracy of 94.33%. Based on XGBoost, ScnML on the test dataset achieved 94.08% 94.24%, 94.26%, and 94.24% accuracies with precision, recall, and F1-measure scores, respectively. Importantly, ScnML identified new significant genes through model interpretation and biological landscape analysis. ScnML can be a powerful tool for predicting the status of spinal cord neuronal cells, revealing potential specific biomarkers quickly and efficiently, and providing crucial insights for precision medicine and rehabilitation recovery.

Keywords