AIMS Mathematics (Jun 2024)
circulant matrix, semiring, key exchange protocols
Abstract
In this manuscript, our work was about a qualitative study for a class of multi-complex orders nonlinear fractional differential equations (FDEs). Our methodology utilized the topological degree theory and studied a novel operator tailored for non-singular FDEs with $ \mathrm{T} $-Riemann-Liouville (T-RL) fractional order derivatives. The primary objective was to prove the existence and uniqueness of solutions for both initial and boundary value problems within the intricated framework. With the help of topological degree theory, we contributed to a wider understanding of the structural aspects governing the behavior of the considered FDE. The novel operator proposing for non-singular FDEs added a unique dimension to our analytical problem, offering a versatile and effective means of addressing the challenges posed by these complex systems for their theoretical analysis. For the practical implications of our theoretical framework, we presented two concrete examples that reinforced and elucidated the key concepts introduced. These examples underscored our approach's viability and highlighted its potential applications in diverse scientific and engineering domains. Through this comprehensive exploration, we aimed to contribute significantly to advancing the theoretical foundation related to the study of multi-complex nonlinear FDEs. Moreover, a fixed-time terminal sliding mode control (TSMC) has been developed. This proposed control strategy for eliminating leukemic cells while maintaining normal cells was based on a chemotherapeutic treatment that was not only effective but also widely acknowledged to be safe. This strategy was evaluated using the fixed-time Lyapunov stability theory, and simulations were included to illustrate its performance in terms of tracking and convergence.
Keywords