Micromachines (Jan 2023)

Recent Progress on Hydrogel-Based Piezoelectric Devices for Biomedical Applications

  • Yuxuan Du,
  • Wenya Du,
  • Dabin Lin,
  • Minghao Ai,
  • Songhang Li,
  • Lin Zhang

DOI
https://doi.org/10.3390/mi14010167
Journal volume & issue
Vol. 14, no. 1
p. 167

Abstract

Read online

Flexible electronics have great potential in the application of wearable and implantable devices. Through suitable chemical alteration, hydrogels, which are three-dimensional polymeric networks, demonstrate amazing stretchability and flexibility. Hydrogel-based electronics have been widely used in wearable sensing devices because of their biomimetic structure, biocompatibility, and stimuli-responsive electrical properties. Recently, hydrogel-based piezoelectric devices have attracted intensive attention because of the combination of their unique piezoelectric performance and conductive hydrogel configuration. This mini review is to give a summary of this exciting topic with a new insight into the design and strategy of hydrogel-based piezoelectric devices. We first briefly review the representative synthesis methods and strategies of hydrogels. Subsequently, this review provides several promising biomedical applications, such as bio-signal sensing, energy harvesting, wound healing, and ultrasonic stimulation. In the end, we also provide a personal perspective on the future strategies and address the remaining challenges on hydrogel-based piezoelectric electronics.

Keywords