New Journal of Physics (Jan 2012)
Overcoming phonon-induced dephasing for indistinguishable photon sources
Abstract
Reliable single photon sources constitute the basis of schemes for quantum communication and measurement based quantum computing. Solid state single photon sources based on quantum dots are convenient and versatile but the electronic transitions that generate the photons are subject to interactions with lattice vibrations. Using a microscopic model of electron–phonon interactions and a quantum master equation, we here examine phonon-induced decoherence and assess its impact on the rate of production, and indistinguishability, of single photons emitted from an optically driven quantum dot system. We find that, above a certain threshold of desired indistinguishability, it is possible to mitigate the deleterious effects of phonons by exploiting a three-level Raman process for photon production.