Neurobiology of Disease (Oct 2001)

GDNF Protects against Aluminum-Induced Apoptosis in Rabbits by Upregulating Bcl-2 and Bcl-XL and Inhibiting Mitochondrial Bax Translocation

  • Othman Ghribi,
  • Mary M. Herman,
  • Michael S. Forbes,
  • David A. DeWitt,
  • John Savory

Journal volume & issue
Vol. 8, no. 5
pp. 764 – 773

Abstract

Read online

Direct (intracisternal) injection of aluminum complexes into rabbit brain results in a number of similarities with the neuropathological and biochemical changes observed in Alzheimer's disease and provides the opportunity to assess early events in neurodegeneration. This mode of administration induces cytochrome c release from mitochondria, a decrease in Bcl-2 in both mitochondria and endoplasmic reticulum, Bax translocation into mitochondria, activation of caspase-3, and DNA fragmentation. Coadministration of glial cell neuronal-derived factor (GDNF) inhibits these Bcl-2 and Bax changes, upregulates Bcl-XL, and abolishes the caspase-3 activity. Furthermore, treatment with GDNF dramatically inhibits apoptosis, as assessed by the TUNEL technique for detecting DNA damage. Treatment with GDNF may represent a therapeutic strategy to reverse the neuronal death associated with Alzheimer's disease and may exert its effect on apoptosis-regulatory proteins.

Keywords