Crystals (Apr 2023)

Novel Mononuclear Tetrabromonitrosylrhenate(II) Complexes Containing Azole-Type Ligands: Magnetostructural Characterization through Hirshfeld Surfaces Analysis

  • Mario Pacheco,
  • Javier González-Platas,
  • Carlos Kremer,
  • Miguel Julve,
  • Francesc Lloret,
  • Alicia Cuevas

DOI
https://doi.org/10.3390/cryst13040658
Journal volume & issue
Vol. 13, no. 4
p. 658

Abstract

Read online

Our research group has made incursions into the scarcely known coordination chemistry of rhenium(II). The literature shows that Re(II) mononuclear complexes are attractive in molecular magnetism due to high magnetic anisotropy because of a significant spin-orbit coupling, making them a potential source for new molecule-based magnets. In this work, we present the preparation of four novel Re(II) compounds of general formula NBu4[Re(NO)Br4(L)] [NBu4+ = tetra-n-butylammonium: L = imidazole (1), pyrazole (2), 1,2,4-triazole (3) and 1H-tetrazole (4)]. The four compounds were fully characterized by single-crystal X-ray diffraction, infrared spectroscopy, and cryomagnetic measurements in the temperature range of 1.8–300 K. Their crystal structures consist of mononuclear [Re(NO)Br4(L)]− complex anions and NBu4+ cations. Each Re(II) ion is six-coordinate with a linear nitrosyl group and one monodentate nitrogen-donor (L), which are trans-positioned, plus four bromide groups, building a tetragonally distorted octahedral surrounding. The inter-anionic contacts were thoroughly analyzed using Hirshfeld surface analyses (plots over the dnorm, shape index, and 2D fingerprints). Cryomagnetic measurements show that these complexes behave as quasi-magnetically isolated spin doublets with weak antiferromagnetic interactions at low temperatures. The magnetic behavior of Re(II) was modeled by the influence of the ligand field, tetragonal distortion, spin-orbit coupling, and covalence effects. In addition, the antiferromagnetic exchange coupling was correlated to the nature of the intermolecular interactions.

Keywords