ACR Open Rheumatology (Dec 2022)

A Pilot Analysis of Genome‐Wide DNA Methylation Patterns in Mouse Cartilage Reveals Overlapping Epigenetic Signatures of Aging and Osteoarthritis

  • Vladislav Izda,
  • Christopher M. Dunn,
  • Emmaline Prinz,
  • Leoni Schlupp,
  • Emily Nguyen,
  • Cassandra Sturdy,
  • Matlock A. Jeffries

DOI
https://doi.org/10.1002/acr2.11506
Journal volume & issue
Vol. 4, no. 12
pp. 1004 – 1012

Abstract

Read online

Objective Cartilage epigenetic changes are strongly associated with human osteoarthritis (OA). However, the influence of individual environmental OA risk factors on these epigenetic patterns has not been determined; herein we characterize cartilage DNA methylation patterns associated with aging and OA in a mouse model. Methods Murine knee cartilage DNA was extracted from healthy young (16‐week, n = 6), old (82‐week, n = 6), and young 4‐week post–destabilization of the medial meniscus (DMM) OA (n = 6) C57BL6/J mice. Genome‐wide DNA methylation patterns were determined via Illumina BeadChip. Gene set enrichment analysis was performed by Ingenuity Pathway Analysis. The top seven most differentially methylated positions (DMPs) were confirmed by pyrosequencing in an independent animal set. Results were compared to previously published human OA methylation data. Results Aging was associated with 20,940 DMPs, whereas OA was associated with 761 DMPs. Merging these two conditions revealed 279 shared DMPs. All demonstrated similar directionality and magnitude of change (Δβ 1.0% ± 0.2%, mean methylation change ± SEM). Shared DMPs were enriched in OA‐associated pathways, including RhoA signaling (P = 1.57 × 10−4), protein kinase A signaling (P = 3.38 × 10−4), and NFAT signaling (P = 6.14 × 10−4). Upstream regulators, including TET3 (P = 6.15 × 10−4), immunoglobulin (P = 6.14 × 10−4), and TLR7 (P = 7.53 × 10−4), were also enriched. Pyrosequencing confirmed six of the seven top DMPs in an independent cohort. Conclusion Aging and early OA following DMM surgery induce similar DNA methylation changes within a murine OA model, suggesting that aging may induce pro‐OA epigenetic “poising” within articular cartilage. Future research should focus on confirming and expanding these findings to other environmental OA risk factors, including obesity, as well as determining late OA changes in mice.