Environmental Sciences Proceedings (Mar 2024)

Evaluation of CartoDEM with the Ice, Cloud, and Land Elevation Satellite-2 and Global Ecosystem Dynamics Investigation Spaceborne LiDAR Datasets for Parts of Plain Region in Moga District, Punjab

  • Ashutosh Bhardwaj,
  • Hari Shanker Srivastava,
  • Raghavendra Pratap Singh

DOI
https://doi.org/10.3390/ECRS2023-16887
Journal volume & issue
Vol. 29, no. 1
p. 73

Abstract

Read online

The CartoDEM Version 3 Release 1 openly accessible datasets are currently the most reliable datasets for relatively plain regions in India specifically. The aim of the presented study is to evaluate CartoDEM with respect to two openly accessible spaceborne LiDAR datasets from two LiDAR sensors: the Advanced Topographic Laser Altimeter System (ATLAS) on board the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) and Global Ecosystem Dynamics Investigation (GEDI) over the International Space Station (ISS). The differences and deviations were computed for CartoDEM and LiDAR footprint elevations for the two datasets, namely, ICESat-2 and GEDI. The difference values were filtered for footprints with differences between 0 and 2.5 in the DEM and LiDAR elevation values. Besides this, an overall estimate was also calculated for the elevation values obtained over the surface, i.e., the ground, as well as objects such as the trees or buildings. The RMSEs were observed to be 1.16 m and 1.74 m for the ICESat-2 and GEDI datasets for the points/footprints on the terrain, whereas when considering similar parameters for the two datasets, the RMSEs were found to be 1.78 m and 5.48 m for the ICESat-2 and GEDI footprints on the surface (terrain/object), respectively. This study reveals that CartoDEM is highly accurate in the plain regions when validated with respect to the ICESat-2 datasets, which work via the photon counting technique. Further, it was observed that ICESat-2’s performance is better than that of the GEDI mission for terrain height. Thus, it was observed that the spaceborne LiDAR datasets from ICESat-2 can be utilized for the validation of DEMs and can be useful for applications where an input to a DEM is required for engineering or modeling applications.

Keywords