PLoS ONE (Jan 2013)

An efficient procedure for marker-free mutagenesis of S. coelicolor by site-specific recombination for secondary metabolite overproduction.

  • Bo Zhang,
  • Lin Zhang,
  • Ruixue Dai,
  • Meiying Yu,
  • Guoping Zhao,
  • Xiaoming Ding

DOI
https://doi.org/10.1371/journal.pone.0055906
Journal volume & issue
Vol. 8, no. 2
p. e55906

Abstract

Read online

Streptomyces bacteria are known for producing important natural compounds by secondary metabolism, especially antibiotics with novel biological activities. Functional studies of antibiotic-biosynthesizing gene clusters are generally through homologous genomic recombination by gene-targeting vectors. Here, we present a rapid and efficient method for construction of gene-targeting vectors. This approach is based on Streptomyces phage φBT1 integrase-mediated multisite in vitro site-specific recombination. Four 'entry clones' were assembled into a circular plasmid to generate the destination gene-targeting vector by a one-step reaction. The four 'entry clones' contained two clones of the upstream and downstream flanks of the target gene, a selectable marker and an E. coli-Streptomyces shuttle vector. After targeted modification of the genome, the selectable markers were removed by φC31 integrase-mediated in vivo site-specific recombination between pre-placed attB and attP sites. Using this method, part of the calcium-dependent antibiotic (CDA) and actinorhodin (Act) biosynthetic gene clusters were deleted, and the rrdA encoding RrdA, a negative regulator of Red production, was also deleted. The final prodiginine production of the engineered strain was over five times that of the wild-type strain. This straightforward φBT1 and φC31 integrase-based strategy provides an alternative approach for rapid gene-targeting vector construction and marker removal in streptomycetes.