Remote Sensing (Mar 2024)
Multi-Channel Hyperspectral Imaging Spectrometer Design for Ultraviolet Detection in the Atmosphere of Venus
Abstract
The spectroscopic detection of SO2 and unknown UV absorber substance in the H2SO4 cloud layer of Venus’ atmosphere is currently a focal point in the study of the habitability of Venusian atmospheric clouds. This paper addresses the simultaneous detection requirements of multiple substances in the ultraviolet range of Venus’ atmosphere and proposes a multi-channel hyperspectral imaging system design using pupil separation prisms and grating multilevel spectra. The system achieves a multi-channel design by splitting the entrance pupil of the telescope using prisms. Spectra from different channels are diffracted to the same detector through different orders of the grating. The system features a single spectrometer and detector, enabling simultaneous detection of spectra from different channels. It also boasts advantages such as compact size, ultra-high spectral resolution, and simultaneous multi-channel detection. The system design results indicate that within the working spectral range of three channels, the spectral resolution is better than 0.15 nm, surpassing previous in-orbit or current in-orbit planetary atmospheric detection spectrometers. With a Nyquist frequency of 56 lp/mm, the full-field MTF exceeds 0.7. The system’s smile is less than 0.05 μm, and the keystone is less than 0.04 μm, meeting the requirements for imaging quality.
Keywords