Applied Sciences (May 2024)

Cost-Effective Temperature Sensor for Monitoring the Setting Time of Concrete

  • Leticia Presa Madrigal,
  • Juan Antonio Rodríguez Rama,
  • Domingo A. Martín Sánchez,
  • Jorge L. Costafreda Mustelier,
  • Miguel Ángel Sanjuán,
  • José Luis Parra y Alfaro

DOI
https://doi.org/10.3390/app14114344
Journal volume & issue
Vol. 14, no. 11
p. 4344

Abstract

Read online

Concrete and Portland cement-based products are the most widely used materials in the construction industry. According to the Global Cement and Concrete Association (GCCA), 14 billion cubic meters of concrete are consumed worldwide every year. Knowledge of their properties is essential to ensure the quality of concrete products and structures. Knowing the evolution of certain parameters related to their durability makes it possible to prevent situations that affect compliance with quality requirements. Thanks to advances in IoT (Internet of Things) technologies, it is possible to know the evolution of these parameters in real time. The following work pursues the development and application of a prototype to monitor the setting time of concrete. This equipment provides real-time measurements, taking advantage of the Internet of Things (IoT) technology, allowing effective monitoring of the thermal behavior of concrete during its setting process. By measuring the temperature of the process and evaluating the resistance acquired during the setting time, we can correlate these two parameters, thus ensuring their correct evolution and allowing quick action to avoid future problems. For the development of this work, temperature measurements were made during the setting of 12 concrete specimens corresponding to four different mixtures (two types of cement with and without additives), assessed at three setting ages (28, 90, and 180 days). Through detailed experimental tests, the sensor was accurately and reliably validated, showing its ability to detect temperature changes, indicating the initial and final setting time. In addition, it was observed that the integration of the DS18B20 sensor does not compromise the structural properties of the concrete. The prototype’s cost-effectiveness, efficiency, and easy installation make it a valuable tool for construction professionals, offering an innovative solution to ensure the quality and durability of the concrete. This breakthrough could represent a significant step towards the digitalization and improvement of construction processes, with direct implications for the efficiency and sustainability of modern infrastructures.

Keywords