Cell Communication and Signaling (Mar 2012)

Rapamycin inhibition of baculovirus recombinant (BVr) ribosomal protein S6 kinase (S6K1) is mediated by an event other than phosphorylation

  • Beigh Mushtaq A,
  • Showkat Mehvish,
  • ul Hussain Mahboob,
  • Latoo Shafat A,
  • Majeed Sheikh T,
  • Andrabi Khurshid I

DOI
https://doi.org/10.1186/1478-811X-10-4
Journal volume & issue
Vol. 10, no. 1
p. 4

Abstract

Read online

Abstract Background Ribosomal protein S6 kinase 1(S6K1) is an evolutionary conserved kinase that is activated in response to growth factors and viral stimuli to influence cellular growth and proliferation. This downstream effector of target of rapamycin (TOR) signaling cascade is known to be directly activated by TOR- kinase mediated hydrophobic motif (HM) phosphorylation at Threonine 412 (T412). Selective loss of this phosphorylation by inactivation of TOR kinase or activation/recruitment of a phosphatase has accordingly been implicated in mediating inhibition by rapamycin. Findings We present evidence that baculovirus driven expression of S6K1 in insect cells (Sf9) fails to activate the enzyme and instead renders it modestly active representing 4-6 folds less activity than its fully active mammalian counterpart. Contrary to the contention that viral infection activates TOR signaling pathway, we report that BVr enzyme fails to exhibit putative TOR dependent phosphorylation at the HM and the resultant phosphorylation at the activation loop (AL) of the enzyme, correlating with the level of activity observed. Surprisingly, the BVr enzyme continued to exhibit sensitivity to rapamycin that remained unaffected by mutations compromised for TOR phosphorylation (T412A) or deletions compromised for TOR binding (ΔNH 2-46/ΔCT104). Conclusions These data together with the ability of the BVr enzyme to resist inactivation by phosphatases indicate that inhibition by rapamycin is not mediated by any phosphorylation event in general and TOR dependent phosphorylation in particular.

Keywords