Atmospheric Chemistry and Physics (Sep 2016)
Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network
- F. Sprovieri,
- N. Pirrone,
- M. Bencardino,
- F. D'Amore,
- F. Carbone,
- S. Cinnirella,
- V. Mannarino,
- M. Landis,
- R. Ebinghaus,
- A. Weigelt,
- E.-G. Brunke,
- C. Labuschagne,
- L. Martin,
- J. Munthe,
- I. Wängberg,
- P. Artaxo,
- F. Morais,
- H. D. M. J. Barbosa,
- J. Brito,
- W. Cairns,
- C. Barbante,
- C. Barbante,
- M. D. C. Diéguez,
- P. E. Garcia,
- A. Dommergue,
- A. Dommergue,
- H. Angot,
- H. Angot,
- O. Magand,
- O. Magand,
- H. Skov,
- M. Horvat,
- J. Kotnik,
- K. A. Read,
- L. M. Neves,
- B. M. Gawlik,
- F. Sena,
- N. Mashyanov,
- V. Obolkin,
- D. Wip,
- X. B. Feng,
- H. Zhang,
- X. Fu,
- R. Ramachandran,
- D. Cossa,
- J. Knoery,
- N. Marusczak,
- M. Nerentorp,
- C. Norstrom
Affiliations
- F. Sprovieri
- CNR Institute of Atmospheric Pollution Research, Rende, Italy
- N. Pirrone
- CNR Institute of Atmospheric Pollution Research, Rome, Italy
- M. Bencardino
- CNR Institute of Atmospheric Pollution Research, Rende, Italy
- F. D'Amore
- CNR Institute of Atmospheric Pollution Research, Rende, Italy
- F. Carbone
- CNR Institute of Atmospheric Pollution Research, Rende, Italy
- S. Cinnirella
- CNR Institute of Atmospheric Pollution Research, Rende, Italy
- V. Mannarino
- CNR Institute of Atmospheric Pollution Research, Rende, Italy
- M. Landis
- Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
- R. Ebinghaus
- Helmholtz-Zentrum, Geesthacht, Germany
- A. Weigelt
- Helmholtz-Zentrum, Geesthacht, Germany
- E.-G. Brunke
- Cape Point GAW Station, Climate and Environment Research & Monitoring, South African Weather Service, Stellenbosch, South Africa
- C. Labuschagne
- Cape Point GAW Station, Climate and Environment Research & Monitoring, South African Weather Service, Stellenbosch, South Africa
- L. Martin
- Cape Point GAW Station, Climate and Environment Research & Monitoring, South African Weather Service, Stellenbosch, South Africa
- J. Munthe
- IVL, Swedish Environmental Research Inst. Ltd., Göteborg, Sweden
- I. Wängberg
- IVL, Swedish Environmental Research Inst. Ltd., Göteborg, Sweden
- P. Artaxo
- University of Sao Paulo, Sao Paulo, Brazil
- F. Morais
- University of Sao Paulo, Sao Paulo, Brazil
- H. D. M. J. Barbosa
- University of Sao Paulo, Sao Paulo, Brazil
- J. Brito
- University of Sao Paulo, Sao Paulo, Brazil
- W. Cairns
- University Ca' Foscari of Venice, Venice, Italy
- C. Barbante
- University Ca' Foscari of Venice, Venice, Italy
- C. Barbante
- CNR Institute for the Dynamics of Environmental Processes, Venice, Italy
- M. D. C. Diéguez
- INIBIOMA-CONICET-UNComa, Bariloche, Argentina
- P. E. Garcia
- INIBIOMA-CONICET-UNComa, Bariloche, Argentina
- A. Dommergue
- Laboratoire de Glaciologie et Géophysique de l'Environnement, University Grenoble Alpes, Grenoble, France
- A. Dommergue
- Laboratoire de Glaciologie et Géophysique de l'Environnement, CNRS, Grenoble, France
- H. Angot
- Laboratoire de Glaciologie et Géophysique de l'Environnement, University Grenoble Alpes, Grenoble, France
- H. Angot
- Laboratoire de Glaciologie et Géophysique de l'Environnement, CNRS, Grenoble, France
- O. Magand
- Laboratoire de Glaciologie et Géophysique de l'Environnement, University Grenoble Alpes, Grenoble, France
- O. Magand
- Laboratoire de Glaciologie et Géophysique de l'Environnement, CNRS, Grenoble, France
- H. Skov
- Department of Environmental Science, Aarhus University, Aarhus, Denmark
- M. Horvat
- Jožef Stefan Institute, Lubliana, Slovenia
- J. Kotnik
- Jožef Stefan Institute, Lubliana, Slovenia
- K. A. Read
- NCAS, University of York, York, UK
- L. M. Neves
- Cape Verde Observatory, INMG – São Vicente, Cabo Verde
- B. M. Gawlik
- Joint Research Centre, Ispra, Italy
- F. Sena
- Joint Research Centre, Ispra, Italy
- N. Mashyanov
- St. Petersburg State University, St. Petersburg, Russia
- V. Obolkin
- Limnological Institute SB RAS, Irkutsk, Russia
- D. Wip
- Department of Physics, University of Suriname, Paramaribo, Suriname
- X. B. Feng
- Institute of Geochemistry, State Key Laboratory of Environmental Geochemistry, Chinese Academy of Sciences, Guiyang, China
- H. Zhang
- Institute of Geochemistry, State Key Laboratory of Environmental Geochemistry, Chinese Academy of Sciences, Guiyang, China
- X. Fu
- Institute of Geochemistry, State Key Laboratory of Environmental Geochemistry, Chinese Academy of Sciences, Guiyang, China
- R. Ramachandran
- Institute for Ocean Management, Anna University, Chennai, India
- D. Cossa
- LER/PAC, Ifremer,Centre Méditerranée, La Seyne-sur-Mer, France
- J. Knoery
- LBCM, Ifremer, Centre Atlantique, Nantes, France
- N. Marusczak
- LER/PAC, Ifremer,Centre Méditerranée, La Seyne-sur-Mer, France
- M. Nerentorp
- Chalmers University of Technology, Gothenburg, Sweden
- C. Norstrom
- Department of Environmental Science, Aarhus University, Aarhus, Denmark
- DOI
- https://doi.org/10.5194/acp-16-11915-2016
- Journal volume & issue
-
Vol. 16
pp. 11915 – 11935
Abstract
Long-term monitoring of data of ambient mercury (Hg) on a global scale to assess its emission, transport, atmospheric chemistry, and deposition processes is vital to understanding the impact of Hg pollution on the environment. The Global Mercury Observation System (GMOS) project was funded by the European Commission (http://www.gmos.eu) and started in November 2010 with the overall goal to develop a coordinated global observing system to monitor Hg on a global scale, including a large network of ground-based monitoring stations, ad hoc periodic oceanographic cruises and measurement flights in the lower and upper troposphere as well as in the lower stratosphere. To date, more than 40 ground-based monitoring sites constitute the global network covering many regions where little to no observational data were available before GMOS. This work presents atmospheric Hg concentrations recorded worldwide in the framework of the GMOS project (2010–2015), analyzing Hg measurement results in terms of temporal trends, seasonality and comparability within the network. Major findings highlighted in this paper include a clear gradient of Hg concentrations between the Northern and Southern hemispheres, confirming that the gradient observed is mostly driven by local and regional sources, which can be anthropogenic, natural or a combination of both.