Open Physics (Oct 2020)
Architecture choices for high-temperature synchronous machines
Abstract
The article proposes an analysis of the possible architectures of synchronous machines with an ability to operate at high temperatures of over 200°C in their environment. Two machine principles have been considered: the permanent magnet synchronous machine and the synchronous reluctance machine. The numerical analyses are carried out with 3D-coupled electromagnetic-fluid-thermal models; the electromagnetic one provides the local losses that give the input data to the coupled thermal-fluid analysis model for computing the temperatures inside the machines. The simulation results are used for estimating the temperature limit of each machine architecture, considering the characteristics of their critical parts.
Keywords