Scientific Reports (Jan 2021)

Inhibition of HIV-1 gene transcription by KAP1 in myeloid lineage

  • Amina Ait-Ammar,
  • Maxime Bellefroid,
  • Fadoua Daouad,
  • Valérie Martinelli,
  • Jeanne Van Assche,
  • Clémentine Wallet,
  • Anthony Rodari,
  • Marco De Rovere,
  • Birthe Fahrenkrog,
  • Christian Schwartz,
  • Carine Van Lint,
  • Virginie Gautier,
  • Olivier Rohr

DOI
https://doi.org/10.1038/s41598-021-82164-w
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 14

Abstract

Read online

Abstract HIV-1 latency generates reservoirs that prevent viral eradication by the current therapies. To find strategies toward an HIV cure, detailed understandings of the molecular mechanisms underlying establishment and persistence of the reservoirs are needed. The cellular transcription factor KAP1 is known as a potent repressor of gene transcription. Here we report that KAP1 represses HIV-1 gene expression in myeloid cells including microglial cells, the major reservoir of the central nervous system. Mechanistically, KAP1 interacts and colocalizes with the viral transactivator Tat to promote its degradation via the proteasome pathway and repress HIV-1 gene expression. In myeloid models of latent HIV-1 infection, the depletion of KAP1 increased viral gene elongation and reactivated HIV-1 expression. Bound to the latent HIV-1 promoter, KAP1 associates and cooperates with CTIP2, a key epigenetic silencer of HIV-1 expression in microglial cells. In addition, Tat and CTIP2 compete for KAP1 binding suggesting a dynamic modulation of the KAP1 cellular partners upon HIV-1 infection. Altogether, our results suggest that KAP1 contributes to the establishment and the persistence of HIV-1 latency in myeloid cells.