Nanomaterials (Mar 2023)

Recent Advances in Two-Dimensional MXene for Supercapacitor Applications: Progress, Challenges, and Perspectives

  • Zambaga Otgonbayar,
  • Sunhye Yang,
  • Ick-Jun Kim,
  • Won-Chun Oh

DOI
https://doi.org/10.3390/nano13050919
Journal volume & issue
Vol. 13, no. 5
p. 919

Abstract

Read online

MXene is a type of two-dimensional (2D) transition metal carbide and nitride, and its promising energy storage materials highlight its characteristics of high density, high metal-like conductivity, tunable terminals, and charge storage mechanisms known as pseudo-alternative capacitance. MXenes are a class of 2D materials synthesized by chemical etching of the A element in MAX phases. Since they were first discovered more than 10 years ago, the number of distinct MXenes has grown substantially to include numerous MnXn−1 (n = 1, 2, 3, 4, or 5), solid solutions (ordered and disordered), and vacancy solids. To date, MXenes used in energy storage system applications have been broadly synthesized, and this paper summarizes the current developments, successes, and challenges of using MXenes in supercapacitors. This paper also reports the synthesis approaches, various compositional issues, material and electrode topology, chemistry, and hybridization of MXene with other active materials. The present study also summarizes MXene’s electrochemical properties, applicability in pliant-structured electrodes, and energy storage capabilities when using aqueous/non-aqueous electrolytes. Finally, we conclude by discussing how to reshape the face of the latest MXene and what to consider when designing the next generation of MXene-based capacitors and supercapacitors.

Keywords