Arabian Journal of Chemistry (Jun 2022)
L-Glutamic acid loaded collagen chitosan composite scaffold as regenerative medicine for the accelerated healing of diabetic wounds
Abstract
Diabetic wounds (DWs) are characterized by prolonged inflammation, which poses a significant challenge for clinicians and researchers to promote healing. In this study, we fabricate L-Glutamic acid (LGA) loaded collagen/chitosan (COL-CS) composite scaffold for the accelerated healing of DW. The characterization outcomes of the composite scaffold revealed that a crosslinked scaffold holds optimum porosity, low matrix degradation, and sustained drug release in contrast to a non-crosslinked scaffold. In vitro, LGA composite scaffolds have not exhibited any toxicity on 3T3L1 cell lines. In vivo, the LGA composite scaffold has shown significantly (p < 0.001), higher rates of wound contraction than those in control and COL-CS scaffold treated groups. In addition, MMP-9 levels were also significantly reduced in LGA composite scaffold-treated group compared with those in the control and COL-CS scaffold treated group. Thus, the LGA composite scaffold may serve as a promising therapy in DW due to its unique modulatory effect on inflammatory biomarker MMP-9.