BMC Medical Informatics and Decision Making (Nov 2021)
Enriching limited information on rare diseases from heterogeneous networks for drug repositioning
Abstract
Abstract Background The historical data of rare disease is very scarce in reality, so how to perform drug repositioning for the rare disease is a great challenge. Most existing methods of drug repositioning for the rare disease usually neglect father–son information, so it is extremely difficult to predict drugs for the rare disease. Method In this paper, we focus on father–son information mining for the rare disease. We propose GRU-Cooperation-Attention-Network (GCAN) to predict drugs for the rare disease. We construct two heterogeneous networks for information enhancement, one network contains the father-nodes of the rare disease and the other network contains the son-nodes information. To bridge two heterogeneous networks, we set a mapping to connect them. What’s more, we use the biased random walk mechanism to collect the information smoothly from two heterogeneous networks, and employ a cooperation attention mechanism to enhance repositioning ability of the network. Result Comparing with traditional methods, GCAN makes full use of father–son information. The experimental results on real drug data from hospitals show that GCAN outperforms state-of-the-art machine learning methods for drug repositioning. Conclusion The performance of GCAN for drug repositioning is mainly limited by the insufficient scale and poor quality of the data. In future research work, we will focus on how to utilize more data such as drug molecule information and protein molecule information for the drug repositioning of the rare disease.
Keywords