PLoS ONE (Mar 2011)

Evidence for an invasive aphid "superclone": extremely low genetic diversity in Oleander aphid (Aphis nerii) populations in the southern United States.

  • John Scott Harrison,
  • Edward B Mondor

DOI
https://doi.org/10.1371/journal.pone.0017524
Journal volume & issue
Vol. 6, no. 3
p. e17524

Abstract

Read online

BackgroundThe importance of genetic diversity in successful biological invasions is unclear. In animals, but not necessarily plants, increased genetic diversity is generally associated with successful colonization and establishment of novel habitats. The Oleander aphid, Aphis nerii, though native to the Mediterranean region, is an invasive pest species throughout much of the world. Feeding primarily on Oleander (Nerium oleander) and Milkweed (Asclepias spp.) under natural conditions, these plants are unlikely to support aphid populations year round in the southern US. The objective of this study was to describe the genetic variation within and among US populations of A. nerii, during extinction/recolonization events, to better understand the population ecology of this invasive species.Methodology/principal findingsWe used five microsatellite markers to assess genetic diversity over a two year period within and among three aphid populations separated by small (100 km) and large (3,700 km) geographic distances on two host plant species. Here we provide evidence for A. nerii "superclones". Genotypic variation was absent in all populations (i.e., each population consisted of a single multilocus genotype (MLG) or "clone") and the genetic composition of only one population completely changed across years. There was no evidence of sexual reproduction or host races on different plant species.Conclusions/significanceAphis nerii is a well established invasive species despite having extremely low genetic diversity. As this aphid appears to be obligatorily asexual, it may share more similarities with clonally reproducing invasive plants, than with other animals. Patterns of temporal and geographic genetic variation, viewed in the context of its population dynamics, have important implications for the management of invasive pests and the evolutionary biology of asexual species.