Scientific Reports (Nov 2024)

Adsorption performance of g-C3N4/graphene, and MIL-101(Fe)/graphene for the removal of pharmaceutical contaminants: a molecular dynamics simulation study

  • Qusai Ibrahim,
  • Salem Gharbia

DOI
https://doi.org/10.1038/s41598-024-75443-9
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 15

Abstract

Read online

Abstract The rising presence of drug-related contaminants in water sources is a major environmental and public health concern. Several studies have addressed the hazardous influence of these pollutants on the lives of over 400 million people worldwide. In this study, we used molecular dynamics simulations to evaluate the efficacy of two promising composite materials for the removal of pharmaceutical contaminants by using the adsorption technique. Graphitic carbon nitride/graphene (g-C3N4/graphene) and metal-organic framework (MIL-101(Fe))/graphene have been simulated for the first time for the removal of three of the most common pollutants (acetaminophen (AC), caffeine (CAF), and sulfamethoxazole (SMZ)). The nanocomposite structure has been created and optimized using the geometry optimization task in the DFTB Modules in the Amsterdam Modeling Suite. We summarized the condition of the essential parameters (Temperature, pressure, and density) of the simulation box during the MD-simulation to ensure the accuracy of our MD-simulation results. The adsorption process, van der Waals interactions, and the adsorption capacity have been calculated by using the Reactive Forcefield (ReaxFF) software. We found that the combination of MIL-101(Fe)/graphene had a higher adsorption capacity for the removal of pharmaceutical contaminants than g-C3N4/graphene. At 40 Picosecond (Ps), 80 molecules of each pharmaceutical contaminants (AC, CAF and SMZ) have been adsorbed by MIL-101(Fe)/graphene with higher exothermic energy equated to (−1174, −1630, and − 2347) MJ/mol respectively. While for g-C3N4/graphene at 40 Ps, 70 molecules of each pharmaceutical contaminants have been adsorbed with exothermic energy equated to (−924, −966, and − 1268) MJ/mol respectively. Also, our results showed that the combination of g-C₃N₄/graphene and MIL-101(Fe)/graphene both have remarkable properties that make them effective at resisting surface clogging. Finally, the results showed that the adsorption kinetics followed a pseudo-first order model, while the adsorption isotherms for AC, CAF and SMZ adhered to Freundlich model.

Keywords